324 research outputs found

    Effect of carbohydrate feeding on the bone metabolic response to running

    Get PDF
    Bone resorption is increased after running, with no change in bone formation. Feeding during exercise might attenuate this increase, preventing associated problems for bone. This study investigated the immediate and short-term bone metabolic responses to carbohydrate (CHO) feeding during treadmill running. Ten men completed two 7-day trials, once being fed CHO (8% glucose immediately before, every 20 min during, and immediately after exercise at a rate of 0.7 g CHO·kg body mass-1·h-1) and once being fed placebo (PBO). On day 4 of each trial, participants completed a 120-min treadmill run at 70% of maximal oxygen consumption (VO2 max). Blood was taken at baseline (BASE), immediately after exercise (EE), after 60 (R1) and 120 (R2) min of recovery, and on three follow-up days (FU1-FU3). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH2-terminal propeptides of procollagen type 1 (P1NP)] were measured, along with osteocalcin (OC), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate, glucagon-like peptide-2 (GLP-2), interleukin-6 (IL-6), insulin, cortisol, leptin, and osteoprotogerin (OPG). Area under the curve was calculated in terms of the immediate (BASE, EE, R1, and R2) and short-term (BASE, FU1, FU2, and FU3) responses to exercise. β-CTX, P1NP, and IL-6 responses to exercise were significantly lower in the immediate postexercise period with CHO feeding compared with PBO (β-CTX: P=0.028; P1NP: P=0.021; IL-6: P=0.036), although there was no difference in the short-term response (β-CTX: P=0.856; P1NP: P=0.721; IL-6: P=0.327). No other variable was significantly affected by CHO feeding during exercise. We conclude that CHO feeding during exercise attenuated the β-CTX and P1NP responses in the hours but not days following exercise, indicating an acute effect of CHO feeding on bone turnover

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt

    Using simulation to interpret a discrete time survival model in a complex biological system: fertility and lameness in dairy cows

    Get PDF
    The ever-growing volume of data routinely collected and stored in everyday life presents researchers with a number of opportunities to gain insight and make predictions. This study aimed to demonstrate the usefulness in a specific clinical context of a simulation-based technique called probabilistic sensitivity analysis (PSA) in interpreting the results of a discrete time survival model based on a large dataset of routinely collected dairy herd management data. Data from 12,515 dairy cows (from 39 herds) were used to construct a multilevel discrete time survival model in which the outcome was the probability of a cow becoming pregnant during a given two day period of risk, and presence or absence of a recorded lameness event during various time frames relative to the risk period amongst the potential explanatory variables. A separate simulation model was then constructed to evaluate the wider clinical implications of the model results (i.e. the potential for a herd’s incidence rate of lameness to influence its overall reproductive performance) using PSA. Although the discrete time survival analysis revealed some relatively large associations between lameness events and risk of pregnancy (for example, occurrence of a lameness case within 14 days of a risk period was associated with a 25% reduction in the risk of the cow becoming pregnant during that risk period), PSA revealed that, when viewed in the context of a realistic clinical situation, a herd’s lameness incidence rate is highly unlikely to influence its overall reproductive performance to a meaningful extent in the vast majority of situations. Construction of a simulation model within a PSA framework proved to be a very useful additional step to aid contextualisation of the results from a discrete time survival model, especially where the research is designed to guide on-farm management decisions at population (i.e. herd) rather than individual level

    Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    Get PDF
    Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm 2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm 2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated AS

    Cervical, Anal and Oral HPV in an Adolescent Inner-City Health Clinic Providing Free Vaccinations

    Get PDF
    Published human papillomavirus (HPV) vaccine trials indicate efficacy is strongest for those naive to the vaccine-types. However, few high-risk young women have been followed and cervical HPV has been the predominant outcome measure.We collected cervical and anal swabs, as well as oral rinse specimens from 645 sexually active inner-city young females attending a large adolescent health-clinic in New York City that offers free care and HPV vaccination. Specimens were tested for HPV-DNA using a MY09/MY11-PCR system. Type-specific prevalence of HPV at each anatomic site was compared for individuals by vaccination dose using generalized estimating equation logistic regression models.The majority of subjects reported being of non-Caucasian (92%) and/or Hispanic ethnicity (61%). Median age was 18 years (range:14-20). All had practiced vaginal sex, a third (33%) practiced anal sex, and most (77%) had also engaged in oral sex. At enrollment, 21% had not received the vaccine and 51% had received three doses. Prevalent HPV infection at enrollment was detected in 54% of cervical, 42% of anal and 20% of oral specimens, with vaccine types present in 7%, 6% and 1% of specimens, respectively. Comparing prevalence for vaccine types, the detection of HPV in the cervix of vaccinated compared to unvaccinated adolescents was significantly reduced: HPV6/11 (odds ratio [OR] = 0.19, 95%CI:0.06-0.75), HPV16 (OR = 0.31, 95%CI:0.11-0.88) and HPV18 (OR = 0.14, 95%CI:0.03-0.75). For anal HPV, the risk of detecting vaccine types HPV6/11 (OR = 0.27, 95%CI:0.10-0.72) and HPV18(OR = 0.12, 95%CI:0.01-1.16) were significantly reduced for vaccinated adolescents however, the risk for HPV16 was not significantly decreased (OR = 0.63, 95%CI:0.18-2.20).HPV Prevalence is extremely high in inner-city female adolescents. Administration of the HPV vaccine reduced the risk for cervical HPV; however continued follow-up is required to assess the protection for HPV at all sites in young women with high exposure

    Collision activity during training increases total energy expenditure measured via doubly labelled water

    Get PDF
    Purpose: Collision sports are characterised by frequent high intensity collisions that induce substantial muscle damage, potentially increasing the energetic cost of recovery. Therefore, this study investigated the energetic cost of collision-based activity for the first time across any sport. Methods: Using a randomised crossover design, six professional young male rugby league players completed two different five-day pre-season training microcycles. Players completed either a collision (COLL; 20 competitive one-on-one collisions) or non-collision (nCOLL; matched for kinematic demands, excluding collisions) training session on the first day of each microcycle, exactly seven days apart. All remaining training sessions were matched and did not involve any collision-based activity. Total energy expenditure was measured using doubly labelled water, the literature gold standard. Results: Collisions resulted in a very likely higher (4.96 ± 0.97 MJ; ES = 0.30 ±0.07; p=0.0021) total energy expenditure across the five-day COLL training microcycle (95.07 ± 16.66 MJ) compared with the nCOLL training microcycle (90.34 ± 16.97 MJ). The COLL training session also resulted in a very likely higher (200 ± 102 AU; ES = 1.43 ±0.74; p=0.007) session rating of perceived exertion and a very likely greater (-14.6 ± 3.3%; ES = -1.60 ±0.51; p=0.002) decrease in wellbeing 24h later. Conclusions: A single collision training session considerably increased total energy expenditure. This may explain the large energy expenditures of collision sport athletes, which appear to exceed kinematic training and match demands. These findings suggest fuelling professional collision-sport athletes appropriately for the "muscle damage caused” alongside the kinematic “work required”. Key words: Nutrition, Recovery, Contact, Rugb
    corecore